Paper: Pseudo-abelian varieties

I’ve posted this paper on the ArXiV: arXiv:1104.0856v1 [math.AG]

Abstract

Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field k to be a smooth connected k-group in which every smooth connected affine normal k-subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way.

We work out much of the structure of pseudo-abelian varieties. These groups are closely related to unipotent groups in characteristic p and to pseudo-reductive groups as studied by Tits and Conrad-Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to pseudo-abelian varieties. Finally, we conjecture a description of Ext^2(G_a,G_m) over any field by generators and relations, in the spirit of the Milnor conjecture.

Advertisements

Leave a comment

Filed under math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s