New paper: Hypersurfaces that are not stably rational

gorey-catsI’ve posted a new paper here (and on the arXiv). It uses the Chow group of algebraic cycles to study a fundamental question in algebraic geometry: which hypersurfaces are stably rational varieties. The result is that for all d at least about 2n/3, a very general complex hypersurface of degree d and dimension n is not stably rational. This is a wide generalization of Colliot-Thélène and Pirutka’s theorem that very general quartic 3-folds are not stably rational. In a vague sense it uses the same machine as last week’s paper.

Drawing by Edward Gorey via Goreyana

Advertisements

Leave a comment

Filed under math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s